Averaging Methods for Heat Storage Control and Design Optimization

Wonsun Song, Jakob Harzer, Moritz Diehl

Introduction

- Seasonal underground heat storage can be used to store summer's surplus solar energy
- We optimize its design and hourly control strategy
- The simulation over a year is very costly and slow

Optimization Problem

minimize (control strategy) (design parameters) subject to (Total Cost)

(year-periodic state simulation), (operational constraints), (satisfy demands)

State dynamics are **affine** in the 3 latter inputs!

T [°C]	80
	70
	60
	50
	40
	30
	20
	10

For a year-long optimization of heat-storage operation, **averaged dynamics** are sufficiently accurate.

Zentrum für Erneuerbare Energien Centre for Renewable Energy

universität freiburg

Averaging Theorem

Lemma 1 (Averaging Theorem). Consider the solution x(t) of the initial value problem

$$\dot{x}(t) = \epsilon f(x(t), t), \qquad x(0) = a \tag{B.1}$$

where the dynamics $f^1 : \mathbb{R}^{n_x} \times \mathbb{R}$ are Lipschitz continuous in (x,t) and T-periodic in t, and $0 < \epsilon \ll 1$. Then, the solution y(t) of the averaged dynamics

$$\dot{y}(t) = \epsilon \bar{f}(y(t)) = \epsilon \frac{1}{T} \int_0^T f(y(t), \tau) \, d\tau \tag{B.2}$$

with initial value y(0) = a approximates the solution of the original dynamics as $y(t) = x(t) + O(\epsilon)$ on the timescale $1/\epsilon$.

Daily Average Dynamics

with mean abs. error of only 0.2%.

Implementation on Github

github.com/JakobHarz/NOSTES

Left to Right: Jakob Harzer, Wonsun Song, Moritz Diehl