Trading Batteries on Reserve and Spot Electricity Markets

Ricarda Hogl, Nils Reiners, Tobias Rohrer Fraunhofer ISE, Group Applied Storage Systems Corresponding author: ricarda.hogl@ise.fraunhofer.de

Introduction

Methods

- 1. Find optimal FCR trades given DAA and FCR prices
- Then perform DAA and IDC optimization given past trades and simplified FCR model (Power 0, SOC 0.5)
- Perfect forecasts for prices, all bids are accepted
- Rolling Window approach allows for virtual trading
- Solved with GLPK & Pyomo
- Hourly simulation of one year on i5-124U (1.6 GHz, 10 cores, 16GB RAM) in 10 minutes

Batteries that switch between stabilizing the grid and energy trading show distinct daily and seasonal patterns

Zentrum für Erneuerbare Energien Centre for Renewable Energy

universität freiburg

- 74% of profits from FCR, 24% from Day-Ahead, 2% from Intraday market
 FCR activation mostly at
- night and midday
- Spot market trading in early morning and late evening
 Very little virtual trading

$\begin{array}{c} \text{maximize} \\ \sigma, B, P, P_c, P_d, \alpha \end{array}$	$\sum_{i \in T} \pi_i * B_i * \Delta t$	(1a)
subject to	$\sigma_{i+1} = \sigma_i - \Delta t * \left(\frac{P_{d,i}}{\eta_d * C}\right) - \frac{P_{c,i} * \eta_c}{C},$	(1b)
	$P_i = P_{d,i} + P_{c,i},$	(1c)
	$P_{c,i} \ge \alpha_i * \overline{P_c},$	(1d)
	$P_{d,i} \le \alpha_i * \overline{P_d},$	(1e)
	$P_i = B_i + S_i,$	(1f)
	$\sigma_0 = \sigma_{ m init},$	(1g)
	$P_i = 0$ if FCR active,	(1h)
	$\sigma_i = 0.5$ if FCR active,	(1i)
	$\sigma_{T_{\sigma}} = 0.5$ if FCR is active directly after horizon	(1j)