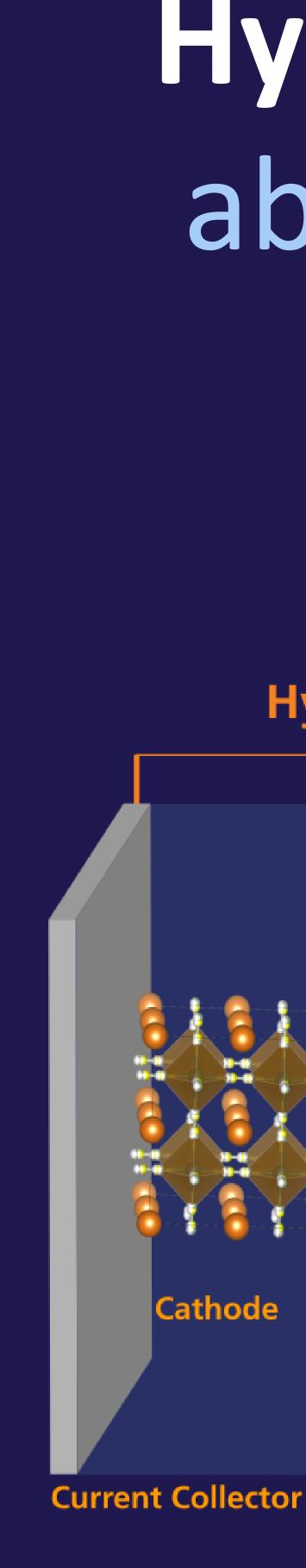
High-Voltage Aqueous Zinc-Hybrid Batteries

Eric Tröster ^{1,2}, Sonia Dsoke ^{1,2} ¹ Fraunhofer ISE,

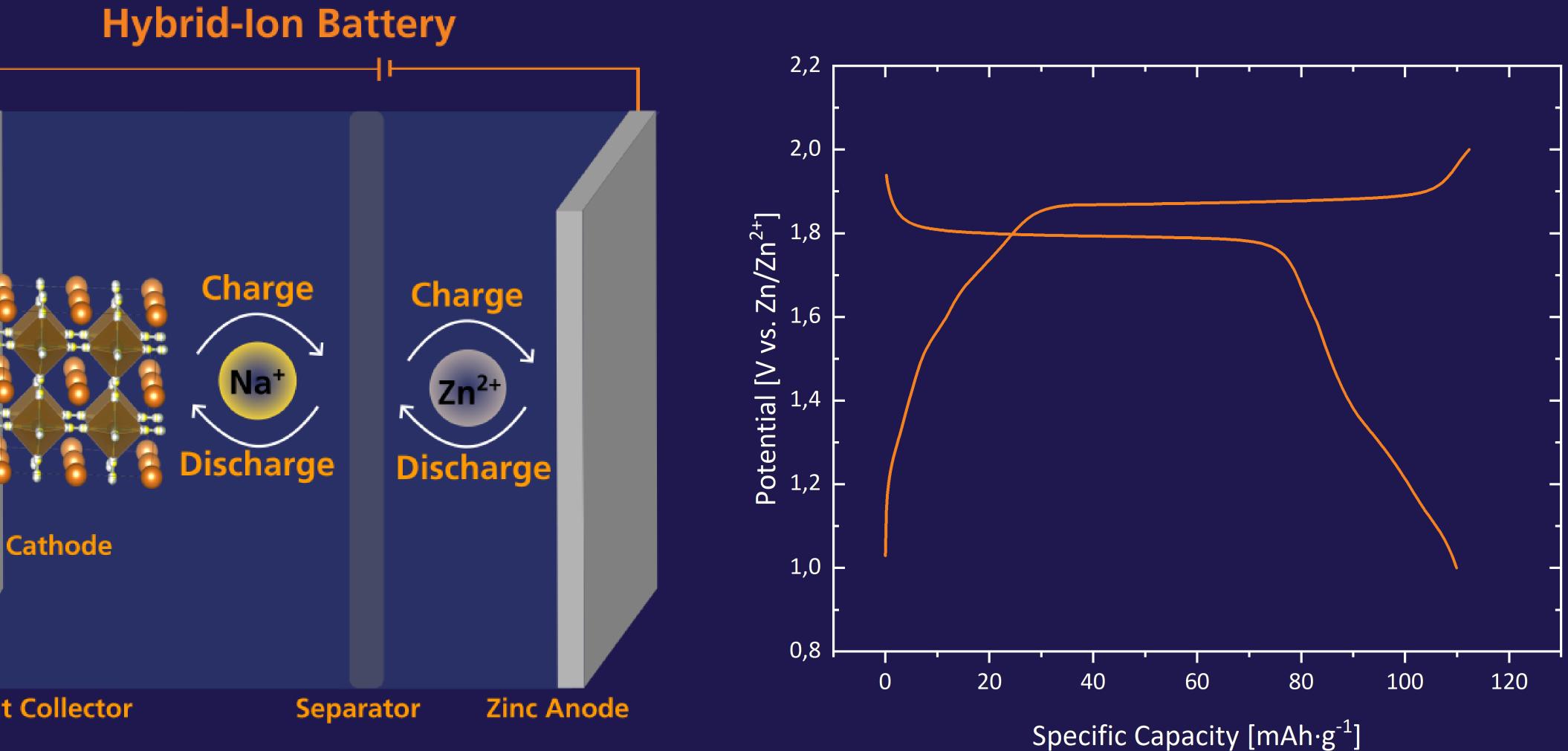
Heidenhofstraße 2, 79110 Freiburg ² Freiburger Materialforschungszentrum, Stefan-Meier-Straße 21, 79104 Freiburg

Introduction


- Aqueous battery systems are beneficial above conventional Lithium-Ion Batteries in terms of safety, environmental impact and production requirements
- Hybrid-Ion Batteries can utilize the full electrochemical stability window of advanced gel or "water-in-salt" electrolyte concepts
- Hybrid-Ion concept \rightarrow Different cations are involved in anode and cathode reaction

Objectives

- Design of electrolytes that withstand potential above the stability window of water (1.23 V)
- Exploring cell chemistries that allow high potentials in a Hybrid-Zinc Ion Battery


Challenges

- Dendrite growth on the Zinc Anode limits the lifetime of traditional Zinc Ion batteries
- Corrosive nature of the electrolyte must be respected for selection of current collector and cell design

Hybrid-Ion Batteries utilize earth abundant materials for low-cost energy storage.

Hofmeister Series

C	$O_3^{2-} > SO_2$	$_{1}^{2} > S_{2}O_{3}$	²⁻ > H ₂ PO	$P_4^- > F^- >$	Cl ⁻ > Br

Water structure maker: Water structure breaker: Kosmotropics Caotropics

 $N(CH_3)_4^+ > NH_4^+ > Cs^+ > Rb^+ > K^+ > Na^+ > Li^+ > Ca^{2+} > Mg^{2+} > Zn^{2+} > Ba^{2+}$

zee

 $r^{-} > NO_{3}^{-} > l^{-} > ClO_{4}^{-} > SCN^{-}$

universitätfreiburg

Cathode Material

Prussian White: Na₂MnFe[CN]₆

- Very good ionic diffusion
- Abundant Materials
- Low environmental impact
- High Potential vs Zinc
- Simple Synthesis

Zinc Anode

- Abundant Material
- High capacity (820 mAh·g⁻¹)
- Compatibility with aqueous electrolytes (SHE: -0.76 V SHE)

Electrolyte

- Utilization of aqueous electrolytes provide higher conductivity compared to organic electrolytes
- Caotropic anions increase the electrochemical stability window of the electrolyte
- Hybrid Electrolyte containing Na/Zn is needed for Hybrid Ion Batteries
- Implementation of gel or "water-insalt" concepts for an improved electrolyte and anode stability

Research Focus

- Probe the intercalation mechanism \rightarrow co-intercalation of Zn²⁺ / Na⁺ in the cathode?
- Explore electrochemical storage mechanisms of aqueous hybrid ion systems

Acknowledgments

The SENERGY project is founded by the DFG (Grant 53106783).

Deutsche Forschungsgemeinschaft German Research Foundation

Cooperation Partner: Institute of Physics of the Czech Academy of Sciences (FZU)

