Investigation of the expansion of battery cells with chromatic confocal distance sensors under varying mechanical stress

D. Nusko1,2, T. Krause3,4, L. Pitta Bauermann1, M. Kroll1, S. Dsoke1,2

1 Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2 79110 Freiburg, Germany
2 Albert-Ludwigs University, Department of Sustainable Systems Engineering – INATECH, Emmy-Noether-Strasse 2, 79110 Freiburg, Germany
3 Precitec GmbH & Co. KG, Draisstraße 11, 52074 Aachen, Germany
4 RWTH Aachen University TOS – Chair for Technology of Optical Systems, Steinfeststraße 15, 52074 Aachen, Germany

Abstract

Actual quality control in battery cell manufacturing includes measuring the electrical behavior of a produced cell [1,2]. Additional optical, non-contact measurements of the expansion behavior of cells performed simultaneously with the electrical measurements can provide deeper insights about the quality of the cells. To investigate the expansion behavior of 1 Ah NMC622 Li-ion pouch cells during cycling, measurements were made using digital image correlation technique on non-compressed cells, as well as measurements using chromatic confocal distance sensors on compressed cells.

Experimental

Battery Cell
- 1 Ah NMC622 / Graphite
- 2 single sided / 8 double sided cathode sheets
- 2 single sided / 8 double sided anode sheets
- Size 66 x 51 x 3 mm3 (L x W x H)

Digital Image Correlation (DIC)
- Two cameras with defined angle focus on same area of interest
- 3D deformation can be measured by recording stochastic pattern on a surface through a digital image sequence
- Image sequences are combined using the photogrammetric theories

Chromatic confocal distance sensor
- White light source focused along a single propagation axis
- Light wavelength, which is focused on the surface, is reflected to sensor
- Distance to workpiece determines reflected wavelength intensities
- Contactless distance measurement

Conclusion and Outlook

- Compressed cells show results with lower deviation and less dilation than uncompressed cells
- Due to large file sizes of DIC, chromatic confocal distance sensors can have higher sampling rates
- DIC has higher potential to measure unclamped cells due to bigger region of interest
- Long-term data with chromatic confocal distance sensors should be recorded to detect irreversible expansion and aging behavior of battery cells
- Cells with defined defects should be measured in compressed condition for comparison with non-defect cells

3D distortion image taken with DIC system at the beginning of a charging cycle (left) and at the end of the charging cycle (right)

Voltage and dilation measurements of battery cells with different surface pressures. Top: Voltage curve of the individual measurements over time. Below: Dilation over voltage measured with chromatic confocal distance sensors with clamped cell surface and DIC with unclamped cells

Measuring principle of DIC

Chromatic confocal distance sensor

[3]

[4] 3

5425

50 kPa

100 kPa

150 kPa

Cell 1 DIC

Cell 2 DIC

Dilation vs Voltage