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Airborne Wind Energy (AWE) systems 
can react quickly to demand or grid 
requirements.

We can predict the system 
performance – e.g., during initial 
design phases or financing – by solving 
Optimal Control Problems (OCP) like

Such a prediction can only be as good 
as the model used in the OCP, 
including the model of the 
momentum transfer in the disturbed 
flow (the wake). One way to describe 
fluid’s behavior is to model the 
sources of circular-motion in the flow 
(vortex).

What happens if we include a rigidly-
convected lifting-line vortex model in 
a single-kite AWE OCP?

Formulate and solve in awebox 

Atmosphere  International Standard Atmosphere
Wind  Log Wind Profile with 5m/s wind speed at 10m height
Kite  6 DOF model of the Ampyx AP2, attached at COM, in lift-mode operation
Other  time period between 5 and 20s, and fixed tether diameter of 2cm

Model Constraints maximum rotational velocity,
maximum tether force, minimum tether force, 
maximum airspeed, minimum airspeed, 
maximum angle of attack and sideslip, minimum angle of attack and sideslip.

OCP  Discretized with Radau direct collocation of order 4, using zero-order-hold 

controls and single-reelout phase-fixing. One-winding initialization by homotopy.
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In single-kite airborne wind energy 
optimal control problems, we only 
need to include a small amount of 
fluid history for a good description.

(center) Snapshot of a power-optimal single-kite AWE system, showing the wake modeled with rigidly-
convected vortex filaments, shed from the kite’s lifting-line. This image show the case of 30 control intervals, 
one period of a resolved ‘near’ wake, and a ‘far’ wake that conserves circulation. (bottom right) Photo of 
vortices shed from a plane at take-off. Photographer: Eric Prado)
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for a single-kite OCP, most of the impact of wake is included 
 when the newest 20%-of-a-period of wake is resolved
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problem size grows with number of wake nodes and control intervals
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before multi-threading memory management takes over, 
 memory scales logarithmically with problem size
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the high aerodynamic force (reel-out) period changes the flow's 
momentum more than the low aerodynamic force (reel-in) period
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