Mixed-integer model predictive control of district heating networks

Armin Nurkanović^a, Christian Wolff^b, Lukas Schmidt-Engelbertz^a, Theda Zoschke^b, Axel Oliva^b, Lilli Frison^b, Gregor Rohbogner^c, Daniel Weiß^c, Moritz Diehla

^a University of Freiburg, Freiburg, Germany, ^b Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany, ^c HBG GmbH, Zell/Wiesental, Germany.

Introduction

Increased complexity in DHNs:

- Many producing units
- Large share of renewables
- Rule-based on/off policy designed "by hand" may not be feasible

Network structure Weil am Rhein

Approach and use-cases

- MPC: solve every sampling time an optimal control problem (OCP)
- OCP is a mixed-integer linear program (MILP)
- Use AI-based weather forecast developed within **WOpS**¹
- Three demonstration networks including Weil am Rhein²: 74 consumers, five producers, one heat storage (6.5 MWh)

Mixed-integer MPC enables optimal operation of complex district heating networks with a large share of renewables

MPC control strategy for a district heating network over 24 hours

Center for Renewable Energy

Albert-Ludwigs-Universität Freiburg

universität freiburg

Problem formulation

MPC - solve every 15 minutes an MILP:

 $c^ op z$ \min Az = bs.t. Cz > d $z=(x,y)\in \mathbb{R}^n imes \{0,1\}^m$

Objective:

Minimize production costs and CO_2 emission

Constraints:

- Energy conservation in the network
- Min. on and off times of production units
- Ramp-up, and ramp-down behavior of the production units
- Hardware limits: capacity, temperatures, power output

Current developments

Run tests in Weil am Rhein during the heating season Extensive comparison to historical data and existing control strategies **Extension to mixed-integer** nonlinear programming models (MINLP) MPC-tailored MINLP solution methods

¹Wärmefluss-Optimierung zur Sektorkopplung, BMWK, 03EN3054-A

²Zoschke, T., Schmidt-Engelbertz, L., Wolff, C., Nurkanović, A., Pineau, C., Lyons, Q., Frison, L., Rohbogner, G., Weiß, D., Diehl, M., Oliva, A. (2023). "Production Optimization of an Existing District Heating Network with Multiple Heat Producers." In: Proceedings of the 18th International Symposium on District Heating and Cooling, September 3– 6, 2023, Beijing, China.