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Distribution grid management 
with graph neural networks
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The expansion of renewable energies leads to a need for active grid operation management in the distribution grid. Conventional methods are 
too slow to react to short term disturbances. 
OUR IDEA: A grid optimization tool based on graph neural networks (GNNs) to support distribution system operators.
GOAL: Reduction of grid expansion and avoidance of supply bottlenecks through intelligent use of the existing grid infrastructure. 
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* Disturbances: Overloads of lines and transformer stations and voltage deviations above 3%
** Possible Solutions: Different grid states with varying positions of the transformer tap changers and remote-controlled line switches
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CONCLUSION
GNNs are well-suited for 
controlling a distribution grid 
and enable optimal use of 
existing grid infrastructure

OUTLOOK
• Integrating the curtailment of 

generation and consumption
• Test at the Digital Grid Lab 

(Fraunhofer ISE)
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connected layer 
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GCN / GAT layer
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• Model architecture is independent of the size of the 
input grid and permutation invariant 

• Topology of the network is used for training 
• Trained GNN can also be applied to new topologies
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Edge features
Line length [km]
Primary line constants 𝑥, 𝑟, 𝑔, 𝑏
Ratio of per unit voltages at each 
bus for tap changed (tap ratio)

Edge index: Adjacency matrix
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Model
Training 

Loss
Validation 

Loss
Test                 

Accuracy

GCN 0.191 0.152 92.2 %

GAT 0.099 0.079 94.4 %

GCN-FCL 0.238 0.164 93.0 %

GAT-FCL 0.097 0.108 93.6 %

F1 Score

Klassen 0 1 2

GCN 0.895 0.947 0.928

GAT 0.923 0.961 0.951

GAT-FCL 0.912 0.938 0.961

GCN-FCL 0.905 0.965 0.923
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